Add like
Add dislike
Add to saved papers

Can Breast Compression Be Reduced in Digital Mammography and Breast Tomosynthesis?

OBJECTIVE: The objective of this study was to investigate the impact of decreasing breast compression during digital mammography and breast tomosynthesis (DBT) on perceived pain and image quality.

MATERIALS AND METHODS: In this two-part study, two groups of women with prior mammograms were recruited. In part 1, subjects were positioned for craniocaudal (CC) and mediolateral oblique (MLO) views, and four levels of compression force were applied to evaluate changes in breast thickness, perceived pain, and relative tissue coverage. No imaging was performed. In part 2, two MLO DBT images of one breast of each patient were acquired at standard and reduced compression. Blurring artifacts and tissue coverage were judged by three breast imaging radiologists, and compression force, breast thickness, relative tissue coverage, and perceived pain were recorded.

RESULTS: Only the first reduction in force was feasible because further reduction resulted in inadequate breast immobilization. Mean force reductions of 48% and 47% for the CC and MLO views, respectively, resulted in a significantly reduced perceived pain level, whereas the thickness of the compressed breast increased by 0.02 cm (CC view) and 0.09 (MLO view, part 1 of the study) and 0.38 cm (MLO view, part 2 of the study), respectively, with no change in tissue coverage or increase in motion blurring.

CONCLUSION: Mammography and DBT acquisitions may be possible using half of the compression force used currently, with a significant and substantial reduction in perceived pain with no clinically significant change in breast thickness and tissue coverage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app