Journal Article
Review
Add like
Add dislike
Add to saved papers

Structural Mimics of Phenyl Pyridine (ppy) - Substituted, Phosphorescent Cyclometalated Homo and Heteroleptic Iridium(III) Complexes for Organic Light Emitting Diodes - An Overview.

Today organic light emitting diodes are a topic of significant academic and industrial research interest. OLED technology is used in commercially available displays, and efforts have been directed to improve this technology. Design and synthesis of phosphorescent based transition metals are capable of harvesting both singlet and triplet excitons and achieve 100 % internal quantum efficiency is an active area of research. Among all the transition metals, iridium is considered a prime candidate for OLEDs due to its prominent photophysical characteristics. In the present review, we have concentrated on the Iridium based homo and heteroleptic complexes that have dissimilar substitutions on phenylpyridine ligands, different ancillary ligands and the effect of substitution on HOMO/LUMO energies and a brief discussion and correlation on the photophysical, electrochemical and device performances of the different complexes have been reviewed for organic light emitting diodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app