Add like
Add dislike
Add to saved papers

Occipital alpha power reveals fast attentional inhibition of incongruent distractors.

Psychophysiology 2018 March
Recent associative models of cognitive control hypothesize that cognitive control can be learned (optimized) for task-specific settings via associations between perceptual, motor, and control representations, and, once learned, control can be implemented rapidly. Midfrontal brain areas signal the need for control, and control is subsequently implemented by biasing sensory representations, boosting or suppressing activity in brain areas processing task-relevant or task-irrelevant information. To assess the timescale of this process, we employed EEG. In order to pinpoint control implementation in specific sensory areas, we used a flanker task with incongruent flankers shown in only one hemifield (congruent flankers in the other hemifield) isolating their processing in the contralateral hemisphere. ERPs revealed fast modulations specifically in visual processing areas contralateral to the incongruent flankers. To test whether these modulations reflect increased or decreased processing of incongruent flankers, we investigated alpha power, a marker for attentional inhibition. Importantly, we show increased alpha power over visual areas processing incongruent flankers from 300 to 500 ms poststimulus onset. This suggests fast cognitive control by attentional inhibition for information disrupting goal-oriented actions. Additionally, we show that midfrontal theta earlier in the trial is also modulated by incongruency, and that theta power predicts subsequent alpha power modulations. This supports the hypothesis that midfrontal incongruency detection leads to control implementation, and reveals that these mechanisms take place on a fast, within-trial timescale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app