Journal Article
Review
Add like
Add dislike
Add to saved papers

Role of Mast Cells in Regulation of T Cell Responses in Experimental and Clinical Settings.

Mast cells secrete a wide spectrum of stored or newly synthesized pro-inflammatory, anti-inflammatory, and/or immunosuppressive mediators and express several costimulatory and inhibitory surface molecules. Mast cells finely tune activities of T cells, B cells, and regulatory cells and effectively contribute to the development of different T cell-associated responses by influencing their recruitment, activation, proliferation, and differentiation. The interaction between mast cells and T cells, with regard to cellular functionality and immune responses, can be assessed in both activating and inhibitory regulations. While Th2 cytokines, including IL-5 and IL-9, stimulate stem cell factor (SCF)-dependent proliferation of mast cells, Th1 cytokine IFN-γ suppresses SCF-mediated differentiation of mast cell progenitors. Mast cell mediators such as CCL5 have a role in the recruitment of CD8+ T cells to viral infection sites where their ability in clearance of viral reservoirs is needed. The capacity of mast cells in presenting antigens by classes I and II MHC molecules to CD4+ and CD8+ T cells respectively is considered one of the main antigen-dependent interactions of mast cells with T cells. Interestingly, Tregs recruit mast cells to different sites through secretion of IL-9, while the OX40L (expressed on mast cell)-OX40(expressed on T cell) interaction inhibits the extent of the mast cell degranulation. Recently, the capability of exosomes to carry regulatory receptors of the mast cell surface and their role in T cell activation has been investigated. Functional interplay between mast cells and T cell subsets has been suggested primarily by investigating their co-localization in inflamed tissues and involvement of mast cells in autoimmune diseases. In this review, the interactions of mast cells with T cells are reviewed in cell-to-cell, cytokine, and exosome categories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app