Add like
Add dislike
Add to saved papers

Electric field controllable magnetic coupling of localized spins mediated by itinerant electrons: a toy model.

In this paper, we propose a toy model to describe the magnetic coupling between the localized spins mediated by the itinerant electron in partially delocalized mixed-valence (MV) systems. This minimal model takes into account the key interactions that are common for all such systems, namely, electron transfer in the valence-delocalized moiety and magnetic exchange between the localized spins and the delocalized electrons. The proposed descriptive model is exactly solvable which allows us to qualitatively and quantitatively discuss the main features of the whole class of partially delocalized MV systems. In the case of relatively strong exchange coupling, the combined action of these two interactions is shown to give rise to a specific kind of double exchange coupling termed here as "external core" double exchange. In the opposite case of relatively strong electron transfer, the general Hamiltonian is shown to be reduced to the effective Hamiltonian of indirect exchange of the localized spins. We argue a possibility to efficiently control the magnetic coupling of the localized spins using an external electric field acting on the delocalized part of the system. Finally, we discuss the perspectives of the present model for molecular spintronics and spin qubits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app