Add like
Add dislike
Add to saved papers

A simple method to measure CLOCK-BMAL1 DNA binding activity in tissue and cell extracts.

The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals.  Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app