Add like
Add dislike
Add to saved papers

Spiral computed tomography evaluation of rabbit VX2 hepatic tumors treated with 20 kHz ultrasound and microbubbles.

Oncology Letters 2017 September
The aim of the present study was to explore the therapeutic effect of 20 kHz ultrasound (US) and microbubbles (MBs) on rabbit VX2 liver tumors by spiral computed tomography (CT) scanning. A total of 16 New Zealand rabbits with hepatic VX2 tumors were divided into four groups: Control, MB, low-frequency US and US + MB. The treatment effect was evaluated by spiral CT scanning prior to, during and following treatment (at 0 weeks and the end of 1 and 2 weeks). The tumor growth rate was recorded. The specimens of VX2 tumors were collected for histological examination and transmission electron microscopy (TEM). No significant differences were observed between tumor areas measured by CT and pathology after 2-week treatment (P>0.05). The mean tumor growth rates in the control, MB, US and US + MB groups after 2 weeks of treatment were 385±21, 353±12, 302±14 and 154±9%, respectively (P<0.05, US + MB vs. the other three groups). Hematoxylin and eosin staining in the US + MB group revealed coagulation necrosis, interstitial hemorrhage and intravascular thrombosis. In the control, MB and US groups, tumor cells exhibited clear nuclear hyperchromatism. TEM of US + MB revealed vascular endothelial cell wall rupture, widened endothelial cell gaps, interstitial erythrocyte leakage and microvascular thrombosis, while intact vascular endothelial cells and normal erythrocytes in the tumor vessels were observed in the control, MB and US groups. A combination of 20 kHz US and MBs may effectively inhibit rabbit VX2 tumors. Spiral CT scanning is an ideal method to evaluate the US treatment on rabbit tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app