Add like
Add dislike
Add to saved papers

Highly Enhanced TMR Ratio and Δ for Double MgO-based p-MTJ Spin-Valves with Top Co2Fe6B2 Free Layer by Nanoscale-thick Iron Diffusion-barrier.

Scientific Reports 2017 September 20
For double MgO-based p-MTJ spin-valves with a top Co2Fe6B2 free layer ex-situ annealed at 400 °C, the insertion of a nanoscale-thickness Fe diffusion barrier between the tungsten (W) capping layer and MgO capping layer improved the face-centered-cubic (f.c.c.) crystallinity of both the MgO capping layer and tunneling barrier by dramatically reducing diffusion of W atoms from the W capping layer into the MgO capping layer and tunneling barrier, thereby enhancing the TMR ratio and thermal stability (Δ). In particular, the TMR ratio was extremely sensitive to the thickness of the Fe barrier; it peaked (154%) at about 0.3 nm (the thickness of only two atomic Fe layers). The effect of the diffusion barrier originated from interface strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app