Journal Article
Review
Add like
Add dislike
Add to saved papers

Mass spectrometry-based metabolic signatures of sex steroids in breast cancer.

Owing to controversy over the effects of steroids on breast cancer pathophysiology, comprehensive quantification of steroid hormones has been extensively considered in both clinical practice and biomarker discovery studies. In contrast to the traditional immunoaffinity-based assays, which show cross-reactivity and have poor validity at low levels of sex steroids, mass spectrometry is becoming a promising tool for measuring steroid levels in complex biological specimens. The Endocrine Society has announced and continuously updated on technical advances to apply high-quality breakthroughs in the clinical sciences. To avoid incorrect estimation of the steroids of interest, however, further emphasis should be made on the efficient separation by chromatography, such as gas and liquid chromatography, prior to mass spectrometric (MS) detection. Recent advances in MS-based analysis of sex steroids associated with breast cancer enable accurate quantification of circulating as well as localized steroids from frozen tissue slices, allowing these assays to be more powerful in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app