Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The calcium-binding protein EpANN from the lichenized fungus Endocarpon pusillum enhances stress tolerance in yeast and plants.

Annexins are calcium-phospholipid binding proteins that play a significant role in the Ca2+ signaling pathway. These proteins are essential for plants to effectively respond to abiotic stresses. However, their functions and mechanisms remain largely unknown in fungi. In this study, an annexin gene, Epann, was cloned from the lichenized fungus Endocarpon pusillum, a drought resistant organism. Our results showed that Epann was induced by several abiotic stresses in E. pusillum. Heterologous expression of the Epann gene enhanced the stress tolerance of Saccharomyces cerevisiae. Under heat-shock conditions, the EpANN proteins were significantly aggregated and the aggregation sites were located on peroxisomes. In heat-shocked cells, Epann reduced the reactive oxygen species level mainly through its intracellular peroxidase activity and regulation of stress-related genes. Transgenic Arabidopsis plants overexpressing Epann exhibited a higher germination rate under oxidative stress and stronger drought tolerance. Our results provide a mechanistic understanding of the role of annexins in abiotic stress responses and suggest that this lichenized fungal gene could be a promising resource to generate stress-tolerant transgenic organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app