JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterisation of a novel coumarin-based fluorescent probe for monitoring nitric oxide production in macrophages.

Nitric oxide (NO) is an important effector molecule in host defence against bacterial pathogens. The development of fluorescence imaging to monitor NO production in vitro and in vivo will increase our understanding of its biological role. Recently, a novel 'trappable' fluorescent blue 'turn-on' Cu(II)-complexed coumarin-based probe (CB) has been developed to detect NO. In this study, CB was investigated to evaluate its ability to detect NO in macrophages. Using confocal microscopy, NO was successfully detected in macrophages in the presence of stimuli that induce nitric oxide synthase (iNOS), the enzyme responsible for production of NO. The time dependence and subcellular compartmentalisation of CB in macrophages were evaluated. The probe can be trapped within cells and reacts directly and specifically with NO, rendering it a promising tool for imaging NO in response to pharmacological agents that modulate its level, for example during bacterial infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app