Add like
Add dislike
Add to saved papers

Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors.

A collection of 36 thiosemicarbazone analogues possessed a broad span of tyrosinase inhibitory activities was designed and obtained. Robust and reliable CoMFA and CoMSIA models were gained to predict the structure-activity relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend upon molecular shape, size, and charge. The sterically bulky group at the C-4 position of the thiophene ring contributed a high capacity for biological activity. Some bulky substituents at the C1-position and C12-position, and electron-negative groups at the C3-position, helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and detailed information about binding mode, affinity, and the principal mechanism between the ligands and tyrosinase. Based on these, a prospective structure modification and optimization of the most potent compound, T32, was suggested for further research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app