Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Isotopic and chemical characteristics of mercury in organs and tissues of fish in a mercury-polluted lake: Evidence for fractionation of mercury isotopes by physiological processes.

Organs and tissues of whitefish and trout from mercury (Hg)-polluted Lake Ontario were analyzed for Hg isotopes, methylmercury (CH3 Hg+ ), and inorganic Hg to investigate possible mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes by physiological processes of the fish. Isotope signatures of different body parts were defined by δ-values of 198 Hg/202 Hg, 199 Hg/202 Hg, 200 Hg/202 Hg, and 201 Hg/202 Hg ratios and by Δ-values representing effects of MIF on 199 Hg/202 Hg and 201 Hg/202 Hg ratios. The research yielded the following evidence for MDF and MIF, including MIF of isotopes with even as well as odd mass numbers, by metabolic activities: 1) anomalously low δ-values for whitefish kidneys but not for trout kidneys; 2) widely varying differences between the δ-values of different body parts of whitefish but practically uniform differences for those of trout; 3) different relationships between Δ199 Hg and Δ201 Hg for whitefish than for trout; 4) nonlinear correlation between δ198 Hg and δ200 Hg for whitefish but linear correlation for trout; 5) an inverse correlation between the δ199 Hg values and CH3 Hg+ concentrations of whitefish and trout; 6) an inverse correlation between the δ201 Hg/δ199 Hg and CH3 Hg+ /inorganic Hg ratios of trout kidneys and gills (and lipids of trout near the sources of pollution) but a positive correlation for muscle, liver, and gut; and 7) inverse correlations between Δ199 Hg and the CH3 Hg+ /inorganic Hg ratio for trout liver, kidneys, and gut. Environ Toxicol Chem 2018;37:515-529. © 2017 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app