Add like
Add dislike
Add to saved papers

Anti-osteoporosis activity of Sanguinarine in preosteoblast MC3T3-E1 cells and an ovariectomized rat model.

Sanguinarine, a benzophenanthridine alkaloid, has been previously demonstrated to exert antimicrobial, anti-inflammatory, and anti-tumor activities. A previous study has identified Sanguinarine as a potential drug candidate for osteoporosis treatment by computational bioinformatics analysis. This study further evaluated the effects of Sanguinarine on the differentiation of murine preosteoblast MC3T3-E1 cells and its anti-osteoporosis activity in an ovarietomized rat model. Sanguinarine treatment (0.25, 0.5, 1, and 2 µm) of MC3T3-E1 cells significantly increased alkaline phosphatase (ALP) activity and the phoshporalyation of AMP-activated protein kinase α subunit (AMPKα), but did not affect cell proliferation. The induction effects of Sanguinarine treatment (2 µm) on ALP activity, AMPKα phosphorylation, Smad1 phosphorylation, and the expression of three osteoblast differentiation-regulators (bone morphogenetic protein 2 [BMP2], osterix [OSX], and osteoprotegerin [OPG]) were partially reversed by Compound C treatment. More importantly, Sanguinarine treatment promoted bone tissue growth in an ovariectomized (OVX) osteoporosis rat model as evaluated by histological examination, micro-CT analysis, and serum parameter detection. In conclusion, these results indicate that Sanguinarine induces the differentiation of MC3T3-E1 cells through the activation of the AMPK/Smad1 signaling pathway. Sanguinarine can stimulate bone growth in vivo and may be an effective drug for osteoporosis treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app