Add like
Add dislike
Add to saved papers

The adsorption of Cu on the CeO 2 (110) surface.

We report a detailed density functional theory (DFT) study in conjunction with extended X-ray absorption fine structure (EXAFS) experiments on the geometrical and local electronic properties of Cu adatoms and Cu(ii) ions in presence of water molecules and of CuO nanoclusters on the CeO2 (110) surface. Our study of (CuO)n(=1,2&4) clusters on CeO2 (110) shows that based on the Cu-O environment, the geometrical properties of these clusters may vary and their presence may lead to relatively high localization of charge on the exposed surfaces. We find that in the presence of an optimum concentration of water molecules, Cu has a square pyramidal geometry, which agrees well with our experimental findings; we also find that Cu(ii) facilitates water adsorption on the CeO2 (110) surface. We further show that a critical concentration of water molecules is required for the hydrolysis of water on Cu(OH)2 /CeO2 (110) and on pristine CeO2 (110) surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app