Add like
Add dislike
Add to saved papers

Field-Effect Transistors Based on van-der-Waals-Grown and Dry-Transferred All-Inorganic Perovskite Ultrathin Platelets.

Nowadays, the research on perovskite transistors is still in its infancy, despite the fact that perovskite-based solar cells and light-emitting diodes have been widely investigated. Two major hurdles exist before obtaining reliable perovskite-based transistors: the processing difficulty for their sensitivity to polar solvents and unsatisfactory perovskite quality on the transistor platform. Here, for the first time, we report on high-performance all-inorganic perovskite FETs profiting from both van der Waals epitaxial boundary-free ultrathin single crystals and completely dry-processed transfer technique without chemical contaminant. These two crucial factors ensure the unprecedented high-quality perovskite channels. The achieved FET hole mobility and on-off ratio reach 0.32 cm2 V-1 s-1 and 6.7 × 103 , respectively. Moreover, at the low temperature, the mobility and on-off ratio can be enhanced to be 1.04 cm2 V-1 s-1 and 1.3 × 104 . This work could open the door for the FET applications based on perovskite single crystals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app