Add like
Add dislike
Add to saved papers

A nitrogen transformation model for multi-layer enhanced groundwater remediation technology.

The multi-layer enhanced groundwater remediation technology (MET) is an innovative platform that integrates physical chemistry, bioremediation, and phytoremediation technology to safely and effectively remediate ammonia nitrogen in groundwater. A nitrogen transformation model was established to study the mechanism of nitrogen transformation within ammonia nitrogen removal in the MET. The model considered organic nitrogen, ammonia nitrogen, and nitrate nitrogen as the variables, and ammonification, nitrification, denitrification, microbial assimilation, plant absorption, adsorption-desorption, and volatilization as the influencing factors. The unknown parameters of the model were obtained by fitting the data from a bench-scale experiment, and the results of the model validation and comparison showed that under the experimental initial conditions (the hydraulic load of the influent is 14.68 m3 /(m2  d) and the concentration of the ammonia nitrogen is 25.0 mg/L) and after the device ran for 45d continuously, the simulated and measured average concentration values of ammonia nitrogen in the effluent were 1.701 mg/L and 1.775 m/L, respectively, and the relative deviation was 4.17%. The simulated and measured average concentration values of nitrate nitrogen in effluent were 11.474 mg/L and 11.244 m/L, respectively, and the relative deviation was 2.05%, and the total removal rate was 92.07%. Thus it can be seen that the predicted values of the nitrogen transformation model were in good agreement with the measured values, and the model could be applied to forecast the long-term remediation effects of nitrogen in groundwater by MET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app