Add like
Add dislike
Add to saved papers

Magnetic Properties of CoFe 2 O 4 Thin Films Synthesized by Radical-Enhanced Atomic Layer Deposition.

A radical-enhanced atomic layer deposition (RE-ALD) process was developed for growing ferrimagnetic CoFe2 O4 thin films. By utilizing bis(2,2,6,6-tetramethyl-3,5-heptanedionato) cobalt(II), tris(2,2,6,6-tetramethyl-3,5-heptanedionato) iron(III), and atomic oxygen as the metal and oxidation sources, respectively, amorphous and stoichiometric CoFe2 O4 films were deposited onto SrTiO3 (001) substrates at 200 °C. The RE-ALD growth rate obtained for CoFe2 O4 is ∼2.4 Å/supercycle, significantly higher than the values reported for thermally activated ALD processes. Microstructural characterization by X-ray diffraction and transmission electron microscopy indicate that the CoFe2 O4 films annealed between 450 and 750 °C were textured polycrystalline with an epitaxial interfacial layer, which allows strain-mediated tuning of the magnetic properties given its highly magnetostrictive nature. The magnetic behavior was studied as a function of film thickness and annealing temperature: saturation magnetization (Ms ) ranged from 260 to 550 emu/cm3 and magnetic coercivity (Hc ) ranged from 0.2 to 2.2 kOe. Enhanced magnetic anisotropy was achieved in the thinner samples, whereas the overall magnetic strength improved after annealing at higher temperatures. The RE-ALD CoFe2 O4 thin films exhibit magnetic properties that are comparable to both bulk crystal and films grown by other deposition methods, with thickness as low as ∼7 nm, demonstrating the potential of RE-ALD for the synthesis of high-quality magnetic oxides with large-scale processing compatibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app