Add like
Add dislike
Add to saved papers

Size-Dependent Reactivity of Nano-Sized Neutral Manganese Oxide Clusters toward Ethylene.

Neutral manganese oxide clusters with the general composition Mn2 N O3 N+x (N=2-22; x=-1, 0, 1) with dimensions up to a nanosize were prepared by laser ablation and reacted with C2 H4 in a fast flow reactor. The size-dependent reactivity of C2 H4 adsorption on these clusters was experimentally identified and the adsorption reactivity decreases generally with an increase of the cluster size. Density functional theory calculations were performed to study the geometrical and electronic structures of the Mn2 N O3 N (N=1-6) clusters. The calculated results indicated that the coordination number and the charge distribution of the metal centers are responsible for the experimentally observed size-dependent reactivity. The highly charged Mn atoms with low coordination are preferential to adsorb C2 H4 . In contrast, the neutral manganese oxide clusters are completely inert toward the saturated hydrocarbon molecule C2 H6 . This work provides new perspectives to design related materials in the separation of hydrocarbon molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app