Add like
Add dislike
Add to saved papers

Chebulinic acid inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression.

Scientific Reports 2017 September 19
Excessive migration of vascular smooth muscle cells (VSMCs) after vascular injury contributes to the development of occlusive vascular disease. Inhibition of VSMC migration is a validated therapeutic modality for occlusive vascular diseases, such as atherosclerosis and restenosis. We investigated the inhibitory effect of chebulinic acid (CBA) on cell migration and matrix metalloproteinase (MMP)-2 activation in platelet-derived growth factor (PDGF)-BB-induced mouse and human VSMCs. CBA significantly inhibited PDGF-BB-induced migration in mouse and human VSMCs, without inducing cell death. Additionally, CBA significantly blocked PDGF-BB-induced phosphorylation of the PDGF receptor (PDGF-R), Akt, and extracellular signal-regulated kinase (ERK)1/2 by inhibiting the activation of the PDGF-BB signalling pathway. In both mouse and human VSMCs, CBA inhibited PDGF-induced MMP-2 mRNA and protein expression as well as the proteolytic activity of MMP-2. Moreover, CBA suppressed sprout outgrowth formation of VSMCs from endothelium-removed aortic rings as well as neointima formation following rat carotid balloon injury. Taken together, our findings indicated that CBA inhibits VSMC migration by decreasing MMP-2 expression through PDGF-R and the ERK1/2 and Akt pathways. Our data may improve the understanding of the antiatherogenic effects of CBA in VSMCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app