Add like
Add dislike
Add to saved papers

Discovery, Semisynthesis, Antiparasitic and Cytotoxic Evaluation of 14-Membered Resorcylic Acid Lactones and Their Derivatives.

Scientific Reports 2017 September 19
Ten antifouling 14-membered resorcylic acid lactones 1-10 were isolated previously with low or trace natural abundance from the zoanthid-derived Cochliobolus lunatus fungus. Further optimization of fermentation conditions led to the isolation of two major natural compounds 7 and 8 with multi-gram quantities. By one or two steps, we semisynthesized the six trace natural compounds 1-6 and a series of derivatives 11-27 of compounds 7 and 8 with high yields (65-95%). Compounds 11-13 showed strong antiplasmodial activity against Plasmodium falciparum with IC50 values of 1.84, 8.36, and 6.95 μM, respectively. Very importantly, 11 and 12 were non-toxic with very safety and high therapeutic indices (CC50/IC50 > 180), and thus representing potential promising leads for antiplasmodial drug discovery. Furthermore, 11 was the only compound showed obvious antileishmanial activity against Leishmania donovani with an IC50 value of 9.22 μM. Compounds 11 and 12 showed the values of IC50 at 11.9 and 17.2 μM against neglected Chagas' disease causing Trypanosoma cruzi, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app