Journal Article
Review
Add like
Add dislike
Add to saved papers

Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.

Zinc oxide (ZnO), as a material with attractive properties, has attracted great interest worldwide, particularly owing to the implementation of the synthesis of nano-sized particles. High luminescent efficiency, a wide band gap (3.36eV), and a large exciton binding energy (60meV) has triggered intense research on the production of nanoparticles using different synthesis methods and on their future applications. ZnO nanomaterials can be used in industry as nano-optical and nano-electrical devices, in food packaging and in medicine as antimicrobial and antitumor agents. The increasing focus on nano zinc oxide resulted in the invention and development of methods of nanoparticles synthesis. Recently, various approaches including physical, chemical and biological ("green chemistry") have been used to prepare ZnO nanocomposites with different morphologies. The obtained nanoparticles can be characterized with a broad range of analytical methods including dynamic light scattering (DLS), electron microscopy (TEM, SEM), UV-VIS spectroscopy, X-ray diffraction (XRD) or inductively coupled plasma with mass spectrometry (ICP-MS). With these it is possible to obtain information concerning the size, shape and optical properties of nanoparticles. ZnO NPs exhibit attractive antimicrobial properties against bacteria (Gram-positive and Gram-negative) and fungi. Zinc oxide nanocomposites show also selective toxicity toward normal and cancerous cells, which is explained by reactive oxygen formation (ROS). Yet despite the potentially interesting antitumor activity of ZnO nanoparticles, it has been proven that they can be also cytotoxic and genotoxic for multiple types of human cells (i.e. neuronal or epithelial cells). This paper reviews the methods of synthesizing zinc oxide nanocomposites as well as their characteristics, antimicrobial activity and cytotoxicity against normal and tumor cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app