Add like
Add dislike
Add to saved papers

An automated toolchain for the data-driven and dynamical modeling of combined sewer systems.

Water Research 2017 December 2
The recent availability and affordability of sensors and wireless communications is poised to transform our understanding and management of water systems. This will enable a new generation of adaptive water models that can ingest large quantities of sensor feeds and provide the best possible estimates of current and future conditions. To that end, this paper presents a novel data-driven identification/learning toolchain for combined sewer and stormwater systems. The toolchain uses Gaussian Processes to model dry-weather flows (domestic wastewater) and dynamical System Identification to represent wet-weather flows (rainfall runoff). By using a large and high-resolution sensor dataset across a real-world combined sewer system, we illustrate that relatively simple models can achieve good forecasting performance, subject to a finely-tuned and continuous re-calibration procedure. The data requirements of the proposed toolchain are evaluated, showing sensitivity to spatial heterogeneity and unique time-scales across which models of individual sites remain representative. We identify a near-optimal time record, or data "age," for which historical measurements must be available to ensure good forecasting performance. We also show that more data do not always lead to a better model due to system uncertainty, such as shifts in climate or seasonal wastewater patterns. Furthermore, the individual components of the model (wet- and dry-weather) often require different volumes of historical observations for optimal forecasting performance, thus highlighting the need for a flexible re-calibration toolchain rather than a one-size-fits-all approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app