Add like
Add dislike
Add to saved papers

A molecular view of the normal human thyroid structure and function reconstructed from its reference transcriptome map.

BMC Genomics 2017 September 19
BACKGROUND: The thyroid is the earliest endocrine structure to appear during human development, and thyroid hormones are necessary for proper organism development, in particular for the nervous system and heart, normal growth and skeletal maturation. To date a quantitative, validated transcriptional atlas of the whole normal human thyroid does not exist and the availability of a detailed expression map might be an excellent occasion to investigate the many features of the thyroid transcriptome.

RESULTS: We present a view at the molecular level of the normal human thyroid histology and physiology obtained by a systematic meta-analysis of all the available gene expression profiles for the whole organ. A quantitative transcriptome reference map was generated by using the TRAM (Transcriptome Mapper) software able to combine, normalize and integrate a total of 35 suitable datasets from different sources thus providing a typical reference expression value for each of the 27,275 known, mapped transcripts obtained. The experimental in vitro validation of data was performed by "Real-Time" reverse transcription polymerase chain reaction showing an excellent correlation coefficient (r = 0.93) with data obtained in silico.

CONCLUSIONS: Our study provides a quantitative global reference portrait of gene expression in the normal human thyroid and highlights differential expression between normal human thyroid and a pool of non-thyroid tissues useful for modeling correlations between thyroidal gene expression and specific thyroid functions and diseases. The experimental in vitro validation supports the possible usefulness of the human thyroid transcriptome map as a reference for molecular studies of the physiology and pathology of this organ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app