JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Discrete-State Kinetics Model for NMR-Based Analysis of Protein Translocation on DNA at Equilibrium.

In the target DNA search process, sequence-specific DNA-binding proteins first nonspecifically bind to DNA and stochastically move from one site to another before reaching their targets. To rigorously assess how the translocation process influences NMR signals from proteins interacting with nonspecific DNA, we incorporated a discrete-state kinetic model for protein translocation on DNA into the McConnell equation. Using this equation, we simulated line shapes of NMR signals from proteins undergoing translocations on DNA through sliding, dissociation/reassociation, and intersegment transfer. Through this analysis, we validated an existing NMR approach for kinetic investigations of protein translocation on DNA, which utilizes NMR line shapes of two nonspecific DNA-protein complexes and their mixture. We found that, despite its use of simplistic two-state approximation neglecting the presence of many microscopic states, the previously proposed NMR approach provides accurate kinetic information on the intermolecular translocations of proteins between two DNA molecules. Interestingly, our results suggest that the same NMR approach can also provide qualitative information about the one-dimensional diffusion coefficient for proteins sliding on DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app