Add like
Add dislike
Add to saved papers

S-Doped TiSe2 Nanoplates/Fe3 O4 Nanoparticles Heterostructure.

Small 2017 September 19
2D Sulfur-doped TiSe2 /Fe3 O4 (named as S-TiSe2 /Fe3 O4 ) heterostructures are synthesized successfully based on a facile oil phase process. The Fe3 O4 nanoparticles, with an average size of 8 nm, grow uniformly on the surface of S-doped TiSe2 (named as S-TiSe2 ) nanoplates (300 nm in diameter and 15 nm in thickness). These heterostructures combine the advantages of both S-TiSe2 with good electrical conductivity and Fe3 O4 with high theoretical Li storage capacity. As demonstrated potential applications for energy storage, the S-TiSe2 /Fe3 O4 heterostructures possess high reversible capacities (707.4 mAh g(-1) at 0.1 A g(-1) during the 100th cycle), excellent cycling stability (432.3 mAh g(-1) after 200 cycles at 5 A g(-1) ), and good rate capability (e.g., 301.7 mAh g(-1) at 20 A g(-1) ) in lithium-ion batteries. As for sodium-ion batteries, the S-TiSe2 /Fe3 O4 heterostructures also maintain reversible capacities of 402.3 mAh g(-1) at 0.1 A g(-1) after 100 cycles, and a high rate capacity of 203.3 mAh g(-1) at 4 A g(-1) .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app