JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A naive Bayes algorithm for tissue origin diagnosis (TOD-Bayes) of synchronous multifocal tumors in the hepatobiliary and pancreatic system.

Synchronous multifocal tumors are common in the hepatobiliary and pancreatic system but because of similarities in their histological features, oncologists have difficulty in identifying their precise tissue clonal origin through routine histopathological methods. To address this problem and assist in more precise diagnosis, we developed a computational approach for tissue origin diagnosis based on naive Bayes algorithm (TOD-Bayes) using ubiquitous RNA-Seq data. Massive tissue-specific RNA-Seq data sets were first obtained from The Cancer Genome Atlas (TCGA) and ∼1,000 feature genes were used to train and validate the TOD-Bayes algorithm. The accuracy of the model was >95% based on tenfold cross validation by the data from TCGA. A total of 18 clinical cancer samples (including six negative controls) with definitive tissue origin were subsequently used for external validation and 17 of the 18 samples were classified correctly in our study (94.4%). Furthermore, we included as cases studies seven tumor samples, taken from two individuals who suffered from synchronous multifocal tumors across tissues, where the efforts to make a definitive primary cancer diagnosis by traditional diagnostic methods had failed. Using our TOD-Bayes analysis, the two clinical test cases were successfully diagnosed as pancreatic cancer (PC) and cholangiocarcinoma (CC), respectively, in agreement with their clinical outcomes. Based on our findings, we believe that the TOD-Bayes algorithm is a powerful novel methodology to accurately identify the tissue origin of synchronous multifocal tumors of unknown primary cancers using RNA-Seq data and an important step toward more precision-based medicine in cancer diagnosis and treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app