Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies.

Aliphatic polyesters have been widely explored for biomedical applications (e.g., drug delivery systems, biomedical devices, and tissue engineering). Recently, polyesters have been used in nanoparticle formulations for the controlled release of monoclonal antibodies (mAbs) for the enhanced efficacy of antibody-based therapy. Polyester-based nanoparticles for mAb delivery provide decreased antibody dosage, increased antibody stability and protection and longer therapeutic action, ultimately translating to an increased therapeutic index. Additionally, nanoencapsulation holds the potential for the selective cellular recognition and internalization of mAbs, in the disease context when intracellular organelles and molecules (e.g., enzymes, transcription factors and oncogenic proteins) are the preferred target. We present here a detailed method to prepare mAb-loaded polyester-based nanoparticles and the various techniques to characterize the resulting nanoparticles and mAb structure. Finally, we highlight different biological approaches to assess the in vitro bioactivity of the antibody upon nanoparticle release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app