Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparison of oxidative stress biomarkers in hypertensive patients with or without hyperhomocysteinemia.

Hyperhomocysteinemia is an independent risk factor for cardiovascular impairment in hypertension. Oxidative stress is important in the molecular mechanisms associated with hypertension, but there are few studies focusing on the comparison of oxidative stress biomarkers in hypertensive patients with or without hyperhomocysteinemia. The study included 50 newly diagnosed hypertensive patients with hyperhomocysteinemia, 50 newly diagnosed hypertensive patients without hyperhomocysteinemia, and 50 age-matched healthy controls. Serum levels of malondialdehyde, nitric oxide, 8-isoprostane-F2ɑ , superoxide dismutase, catalase, and glutathione peroxides were compared. Levels of malondialdehyde and 8-isoprostane-F2ɑ were higher in both hypertensive groups than in the control group (8.3 ± 1.8 μmol/L vs. 6.5 ± 1.3 μmol/L vs. 4.3 ± 1.2 μmol/L, P < 0.05; 23.5 ± 12.1 pg/mL vs. 17.4 ± 10.3 pg/mL vs. 13.9 ± 7.5 pg/mL, P < 0.05), while levels of superoxide dismutase and catalase were lower in both hypertensive groups than in the control group (120.5 ± 13.7 U/mL vs. 131.3 ± 18.2 U/mL vs. 149.1 ± 14.6 U/mL, P < 0.05; 23.8 ± 7.4 U/mL vs. 24.6 ± 9.2 U/mL vs. 33.5 ± 8.2 U/mL, P < 0.05). In hypertensive subgroups, serum malondialdehyde levels were higher in the hyperhomocysteinemia group than the other group (8.3 ± 1.8 μmol/L vs. 6.5 ± 1.3 μmol/L; P < 0.05), and superoxide dismutase activities were lower in the hyperhomocysteinemia group than the other group (120.5 ± 13.7 U/mL vs. 131.3 ± 18.2 U/mL; P < 0.05). Moreover, in hypertensive patients, homocysteine levels were significantly correlated with malondialdehyde (r = 0.39, P < 0.01), 8-isoprostane-F2ɑ (r = 0.47, P < 0.05), superoxide dismutase (r = -0.51, P < 0.01), and catalase (r = -0.51, P < 0.05), respectively. Our findings demonstrated oxidative stress was more severe in hypertensive patients with hyperhomocysteinemia than those hypertensive patients without it. Besides, there were strong relationships between homocysteine activities and oxidative/antioxidative parameters, which indicated that homocysteine might aggravate the oxidative stress in hypertension to produce contributory effects on cardiovascular impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app