Add like
Add dislike
Add to saved papers

Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa.

Natural enemies are exposed to insecticide sprays for herbivorous species and may evolve field resistance to insecticides. Natural enemies selected for resistance in the field, however, are welcome for pest control. The susceptibility of 20 populations of Eriopis connexa from various crop ecosystems to λ-cyhalothrin was tested. Three bioassays were conducted: (i) topical treatment with lethal dose (LD)50 previously determined for populations considered standard for susceptibility (LD50S) and for resistance (LD50R) to λ-cyhalothrin at technical grade; (ii) dose-mortality assay to calculate the LD for populations exhibiting significant survival to the LD50R; and (iii) determination of survival when exposed to dried residues at field rates. Among the 20 tested populations, seven populations did not survive or survival rates were lower than 10% when treated with LD50R; three populations survived >20%, but lower than 50%; while ten populations exhibited equal or greater survival rates compared with the 50% expected survival for the LD50R. Thus, these ten populations were subjected to dose-mortality response, and the LD50 values varied from 0.046 to 5.44 µg a.i./insect with resistance ratio of 8.52- to 884.08-folds. Adults from these ten populations that were ranked as resistant according to the LD50R exhibited survival from 44.5 to 100% exposed to the lowest and from 38.8 to 100% exposed to the highest field rates of λ-cyhalothrin, respectively. Otherwise, the remaining ten populations ranked as susceptible according to the LD50R showed survival from 3.3 to 56% exposed to the lowest and from 0 to 17.7% exposed to the highest field rates of λ-cyhalothrin, respectively. Therefore, 50% of the tested E. connexa populations exhibited field-evolved resistance to λ-cyhalothrin and the use of a discriminatory LD50 for resistance matched the survival obtained when exposed to the insecticide field rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app