Add like
Add dislike
Add to saved papers

[Bioinformatic analysis and characterization of myxobacteria laccase-like multicopper oxidases].

Laccase is a widely-used environment-friendly copper-containing oxidase found in many plants, insects and fungi. Recently, more and more laccases are also found in bacteria. Myxobacteria are an important bacteria resource. However, myxobacteria are much more difficult to isolate and purify than other bacteria. We used bioinformatic approach to screen myxobacteria proteomes available in NCBI. Based on conserved sequences of four copper binding sites in multicopper oxidase, 30 potential laccase sequences were obtained. Among them, nine genes were synthesized and expressed in Escherichia coli BL21 (DE3). Seven proteins showed laccase activity when tested with traditional laccase substrates. One protein, named rSC-2, was chosen for further research because it exhibited the highest activity towards 2,6-dimethyl phenol (DMP). The molecular weight of rSC-2 was 57 kDa. Its specific activity to DMP was 0.27 U/mg. The optimal temperature and the optimal pH were 60 ℃ and 7.0, respectively. About 50% of the original activity was retained after incubation at 60 ℃ and pH 7.0-8.0 for 1 h. Metals showed different effects on rSC-2. rSC-2 activity was enhanced by several metalsat concentration of 1 mmol/L, such as Ca²⁺ and Mn²⁺. With a higher concentration of 5 mmol/L, the activity of rSC-2 was apparently inhibited. This is the first report of bioinformatics screening myxobacteria laccases in combination with expression in E. coli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app