Add like
Add dislike
Add to saved papers

Effects of Periplasmic Chaperones and Membrane Thickness on BamA-Catalyzed Outer-Membrane Protein Folding.

The biogenesis of outer-membrane proteins (OMPs) in gram-negative bacteria involves delivery by periplasmic chaperones to the β-barrel assembly machinery (BAM), which catalyzes OMP insertion into the outer membrane. Here, we examine the effects of membrane thickness, the Escherichia coli periplasmic chaperones Skp and SurA, and BamA, the central subunit of the BAM complex, on the folding kinetics of a model OMP (tOmpA) using fluorescence spectroscopy, native mass spectrometry, and molecular dynamics simulations. We show that prefolded BamA promotes the release of tOmpA from Skp despite the nM affinity of the Skp:tOmpA complex. This activity is located in the BamA β-barrel domain, but is greater when full-length BamA is present, indicating that both the β-barrel and polypeptide transport-associated (POTRA) domains are required for maximal activity. By contrast, SurA is unable to release tOmpA from Skp, providing direct evidence against a sequential chaperone model. By varying lipid acyl chain length in synthetic liposomes we show that BamA has a greater catalytic effect on tOmpA folding in thicker bilayers, suggesting that BAM catalysis involves lowering of the kinetic barrier imposed by the hydrophobic thickness of the membrane. Consistent with this, molecular dynamics simulations reveal that increases in membrane thinning/disorder by the transmembrane domain of BamA is greatest in thicker bilayers. Finally, we demonstrate that cross-linking of the BamA barrel does not affect tOmpA folding kinetics in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, suggesting that lateral gating of the BamA barrel and/or hybrid barrel formation is not required, at least for the assembly of a small 8-stranded OMP in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app