Add like
Add dislike
Add to saved papers

Identifying novel factor XIIa inhibitors with PCA-GA-SVM developed vHTS models.

There currently is renewed interest in blood clotting Factor XII as a potential target for thrombosis inhibition. Historically untargeted, there is little drug information with which to start drug candidate searches. Typical high-throughput screening can identify potential drug candidates, but is inefficient. Virtual high-throughput screening can be used to raise efficiency by focusing experimental efforts on compounds predicted to be active and is applied here to identify new Factor XIIa inhibitors. We combine principal component analysis, genetic algorithm and support vector machine to create the models used in the virtual high-throughput screening. In this work, experimental data from a PubChem Bioassay was used to train predictive models of Factor XIIa inhibition activity. The models created were then used to virtually screen the entire 72 million PubChem Compound database. Experimental validation of select candidates identified by this process resulted in a 42.9% hit-rate in the first-pass and 100% hit-rate in the second-pass, suggesting the effectiveness of the approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app