Add like
Add dislike
Add to saved papers

Synthesis of a trisaccharide repeating unit of the O-antigen from Burkholderia cenocepacia and its dimer.

Carbohydrate Research 2017 November 9
The trisaccharide repeating unit of an O-antigen derived from Burkholderia cenocepacia and its dimer, i.e., α-L-Rhap-(1 → 3)-α-D-GalpNAc-(1 → 3)-β-D-GalpNAc-O(CH2 )3 N3 (1) and α-L-Rhap-(1 → 3)-α-D-GalpNAc-(1 → 3)-β-D-GalpNAc-(1 → 4)-α-L-Rhap-(1 → 3)-α-D-GalpNAc-(1 → 3)-β-D-GalpNAc-O(CH2 )3 N3 (2), respectively, were synthesized via a highly convergent strategy. Glycosylation of galactosaminyl acceptor 4 with galactosaminyl trichloroacetimidate donor 5 was followed by condensation of resulting disaccharide acceptor 12 with rhamnosyl imidate donor 6 to furnish stereoselectively trisaccharyl thioglycoside 3, which was used as a key and common glycosyl donor for the construction of both 1 and 2. Title molecule 1 was prepared by glycosylation of 3-azidopropanol with 3 and subsequently global deprotection, whereas coupling reaction of 3 with a trisaccharide acceptor 21 containing an 2,3-O-position acetonide-modified rhamnose residue, followed by global deprotection, generated the dimer 2 in a convergent [3 + 3] manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app