Add like
Add dislike
Add to saved papers

Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics.

Carbohydrate Polymers 2017 November 2
The present work investigates the synergistic impact of glucoamylase and ultrasound on starch hydrolysis. The extent of starch hydrolysis at different reaction parameters (ultrasonic intensity, temperature, reaction time) was analyzed. The hydrolysis extent increased with the reaction time and reached a maximum value under ultrasonic intensity of 7.20W/mL at 10min. Ultrasound did not alter the optimum enzymatic temperature but speeded up the thermal inactivation of glucoamylase. The evaluation of enzymatic kinetics and starch degradation kinetics indicated a promotion of the reaction rate and enzyme-substrate affinity. According to the thermodynamic results, sonoenzymolysis reactions require less energy than enzymolysis reactions. The measurement of molecular weight, solubility, thermal properties, and structures of the substrates revealed that sonoenzymolysis reaction generated greater impacts on starch properties. The molecular weight and radii of gyration decreased by 80.19% and 90.05% respectively while the starch solubility improved by 136.50%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app