Add like
Add dislike
Add to saved papers

The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse.

Carbohydrate Polymers 2017 November 2
Understanding the interaction mechanisms between xylan and xylan-degrading enzymes is beneficial to the efficient hydrolysis of xylan. Xylan from sugarcane bagasse (SB) was extracted and characterized. The effects of heat treatment and removal of side chains of SB xylan on the hydrolytic efficiency and synergistic action of endo-β-1,4-xylanases (HoXyn11A and AnXyn10C), β-xylosidases (AnXln3D), and α-l-arabinofuranosidases (AnAxh62A) were investigated. Results indicated that heat treatment of xylan can improve the hydrolytic efficiency of xylan-degrading enzymes, and it is essential for the efficient hydrolysis of xylan by HoXyn11A. The removal of arabinofuranosyl side chains of xylan by AnAxh62A before enzymatic hydrolysis reduced the hydrolytic efficiency of HoXyn11A and AnXyn10C on xylan. AnXyn10C was more efficient than HoXyn11A in hydrolysis of xylan, whereas HoXyn11A showed better synergistic action than AnXyn10C with AnAxh62A and AnXln3D in the hydrolysis of xylan. This study provides new insights on the enzymatic hydrolysis of SB into monosaccharides and xylo-oligosaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app