Add like
Add dislike
Add to saved papers

ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine.

Talanta 2018 January 2
In this study, ZnO nanotubes (ZNTs) were prepared onto fluorine-doped tin oxide (FTO) glass and used as supports for MIPs arrays fabrication. Due to the imprinted cavities are always located at both inner and outer surface of ZNTs, these ZNTs supported MIPs arrays have good accessibility towards template and can be used as sensing materials for chemical sensors with high sensitivity, excellent selectivity and fast response. Using K3 [Fe(CN)6 ] as electron probe, the fabricated electrochemical sensor shows two linear dynamic ranges (0.02-5μM and 10-800μM) towards dopamine. This proposed electrochemical sensor has been applied for dopamine determination with satisfied recoveries and precision. More complex human urine samples also confirmed that the proposed method has good accuracy for dopamine determination in real biological samples. These results suggest potential applicability of the proposed method and sensor in important molecule analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app