Add like
Add dislike
Add to saved papers

Improved visible-light activities for degrading pollutants on TiO 2 /g-C 3 N 4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path.

It has been clearly demonstrated that the visible-light photocatalytic activities of g-C3 N4 (CN) for degrading 2,4-dichlorophenol (2,4-DCP) and bisphenol A (BPA) could be improved by fabricating nanocomposites with a proper amount of nanocrystalline anatase TiO2 . Interestingly, the visible-light activities of the amount-optimized nanocomposite could be further improved after decorating Au nanoparticles, with 5.11- and 3.1-time improvement respectively for 2,4-DCP and BPA compared to that of CN, even much higher than that of P25 TiO2 under UV-vis irradiation. Based on the transient-state surface photovoltage responses and photoelectrochemical measurements, it is confirmed that the exceptional visible-light activities of the fabricated Au-(TiO2 /g-C3 N4 ) nanocomposites are attributed to the extended visible-light response due to the surface plasmonic resonance (SPR) of decorated Au and its catalytic function, and to the enhanced charge separation by transferring electrons from CN and SPR Au to TiO2 in the nanocomposites. The highly promoted charge separation results in the effective availability of a large number of hydroxyl radicals (OH) participating in the photocatalytic oxidation process of 2,4-DCP. Furthermore, a possible mechanism of 2,4-DCP degradation is proposed according to the detailed analyses of produced intermediates. This work provides new idea for designing Au assisted nanocomposite photocatalysts for environmental remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app