Add like
Add dislike
Add to saved papers

Role of RKKY torque on domain wall motion in synthetic antiferromagnetic nanowires with opposite spin Hall angles.

Scientific Reports 2017 September 16
We experimentally show the effect of enhanced spin-orbit and RKKY induced torques on the current-induced motion of a pair of domain walls (DWs), which are coupled antiferromagnetically in synthetic antiferromagnetic (SAF) nanowires. The torque from the spin Hall effect (SHE) rotates the Néel DWs pair into the transverse direction, which is due to the fact that heavy metals of opposite spin Hall angles are deposited at the top and the bottom ferromagnetic interfaces. The rotation of both DWs in non-collinear fashion largely perturbs the antiferromagnetic coupling, which in turn stimulates an enhanced interlayer RKKY exchange torque that improved the DW velocity. The interplay between the SHE-induced torque and the RKKY exchange torque is validated via micromagnetic simulations. In addition, the DW velocity can be further improved by increasing the RKKY exchange strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app