Add like
Add dislike
Add to saved papers

Switches in a genetic regulatory system under multiplicative non-Gaussian noise.

The non-Gaussian noise is multiplicatively introduced to model the universal fluctuation in the gene regulation of the bacteriophage λ. To investigate the key effect of non-Gaussian noise on the genetic on/off switch dynamics from the viewpoint of quantitative analysis, we employ the high-order perturbation expansion to deduce the stationary probability density of repressor concentration and the mean first passage time from low concentration to high concentration and vice versa. The occupation probability of different concentration states can be estimated from the height and shape of the peaks of the stationary probability density, which could be used to determine the overall expression level. A further concern is the mean first passage time, also referred to as the mean switching time, which can be adopted as an important measure to characterize the adaptability of gene expression to the environmental variation. Through our investigation, it is observed that the non-Gaussian heavy-tailed noise can better induce the switches between distinct genetic expression states and additionally, it accelerates the switching process more evidently compared to the Gaussian noise and the bounded noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app