Add like
Add dislike
Add to saved papers

Roles of amino acid residues H66 and D326 in the creatine kinase activity and structural stability.

Creatine kinase (CK) is a key enzyme for cellular energy metabolism, catalyzing the reversible phosphoryl transfer from phosphocreatine to ADP in vertebrates. CK contains a pair of highly conserved amino acids (H66 and D326) which might play an important role in sustaining the compact structure of CK by linking its N- and C- terminal domains; however the mechanism is still unclear. In this study, spectroscopic, structural modeling and protein folding experiments suggested that D326A, H66P and H66P/D326A mutations led to disruption of the hydrogen bond between those two amino acid residues and form the partially unfolded state which made it easier to be inactivated and unfolded under environmental stresses, and more prone to form insoluble aggregates. The formation of insoluble aggregates would decrease levels of active CKs which may provide clues in CK deficiency disease. Moreover, these results indicated that the degree of synergism had closely relationship to the conformational changes of CK. Thus, our results provided clues for understanding the mechanism of amino acid residues outside the active site in regulating substrate synergism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app