Add like
Add dislike
Add to saved papers

Non-canonical Wnt mediated neurogenic differentiation of human bone marrow-derived mesenchymal stem cells.

Neuroscience Letters 2017 November 2
Bone marrow-derived mesenchymal stem cells (BM-MSCs), which are characterized by multipotency and self-renewal, are responsible for tissue regeneration and repair. We have previously reported in adipose tissue-derived MSCs that only Wnt5a is enhanced at neurogenic differentiation, and the mechanism of differentiation is dependent on the Wnt5a/JNK pathway; however, the role of Wnt/MAPK pathway is yet to be investigated in neurogenic differentiation in BM-MSCs. We compared the transcriptional expression of Wnt in neurogenic induced-hBM-MSCs (NI-hBM-MSCs) with that in primary hBM-MSCs, using RT-PCR, qPCR, and western blotting. Although the expression of Wnt1 and Wnt2 was unchanged, the expression of Wnt4, Wnt5a, and Wnt11 increased after neurogenic differentiation. In addition, only the expression of frizzled class receptor (Fzd) 3 gene was increased, but not of most of the Fzds and Wnt ligands in NI-hBM-MSCs. Interestingly, Wnt4, Wnt5a, and Wnt11 gene expressions significantly increased in NI-hBM-MSCs by qPCR. In addition, the protein expression level of Wnt4 and Wnt5a, but not Wnt3, increased after neurogenic induction. Furthermore, the expressions of phosphorylated-GSK-3β, ERK1/2, and PKC decreased; however, JNK was activated after neurogenic differentiation. Thus, non-canonical Wnts, i.e., Wnt4, Wnt5a, and Wnt11, regulate neurogenic differentiation through Fzd3 activation and the increase in downstream targets of JNK, which is one of the non-canonical pathways, in hBM-MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app