JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures.

Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner. Interestingly, capsid proteins of spherical plant viruses can self-assemble into well-organized icosahedral three-dimensional (3D) nanoscale multivalent architectures with high monodispersity and structural symmetry. Using viral genetic and protein engineering of icosahedral viruses with a variety of sizes, the interior, exterior and the interfaces between coat protein (CP) subunits can be manipulated to fabricate materials with a wide range of desirable properties allowing for biomineralization, encapsulation, infusion, controlled self-assembly, and multivalent ligand display of nanoparticles or molecules for varied applications. In this review, we discuss the various functional nanomaterials/nanostructures developed using the VNPs and VLPs of different icosahedral plant viruses and their nano(bio)technological and nanomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app