Add like
Add dislike
Add to saved papers

The Protein and Energy Metabolic Response of Skeletal Muscle to the Low-Protein Diets in Growing Pigs.

This study was conducted to determine the effect of low-protein diets on protein and energy metabolism in skeletal muscle, and to elucidate the underlying mechanism. A total of 18 growing pigs (average initial body weight = 36.47 kg) were individually penned and assigned to three treatments; each treatment was fed one of three diets containing either 18%, 15%, or 12% CP. The results showed that reducing dietary CP contents decreased (P < 0.05) the weight of half Longissimus dorsi (LD) muscle and serum concentration of insulin-like growth factor 1 (IGF-1). Compared with the 18% and 15% CP treatments, the 12% CP treatment suppressed (P < 0.05) the components of mammalian target of rapamycin complex 1 (mTORC1) pathway, but upregulated (P < 0.05) the mRNA levels for proteolysis-related genes, and concomitantly caused an increase (P < 0.05) in the percentage of apoptotic cells in LD muscle. Along with lower (P < 0.05) AMP/ATP ratio and greater (P < 0.05) energy charge value in LD muscle of the 12% CP treatment, there was a concurrent decrease (P < 0.05) in the proteins for AMP-activated protein kinase α (AMPKα) pathway. Likewise, these results were also observed in the Biceps femoris muscle with slightly different degree of impacts. These results indicate that the retardation effect of low-protein supply on muscle growth of growing pigs could be likely regulated by inhibiting IGF-1/mTORC1 protein synthesis cascade, along with strong alterations in energy status and AMPKα pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app