Add like
Add dislike
Add to saved papers

The Thermodynamic Basis of the Fuzzy Interaction of an Intrinsically Disordered Protein.

Angewandte Chemie 2017 September 16
Many intrinsically disordered proteins (IDP) that fold upon binding retain conformational heterogeneity in IDP-target complexes. The thermodynamics of such fuzzy interactions is poorly understood. Herein we introduce a thermodynamic framework, based on analysis of ITC and CD spectroscopy data, that provides experimental descriptions of IDP association in terms of folding and binding contributions which can be predicted using sequence folding propensities and molecular modeling. We show how IDP can modulate the entropy and enthalpy by adapting their bound-state structural ensemble to achieve optimal binding. This is explained in terms of a free-energy landscape that provides the relationship between free-energy, sequence folding propensity, and disorder. The observed "fuzzy" behavior is possible because of IDP flexibility and also because backbone and side-chain interactions are, to some extent, energetically decoupled allowing IDP to minimize energetically unfavorable folding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app