Add like
Add dislike
Add to saved papers

Near-infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis.

Physiological Reports 2017 September
To date our knowledge of skeletal muscle deoxygenation as measured by near-infrared spectroscopy (NIRS) is predicated almost exclusively on sampling of superficial muscle(s), most commonly the vastus lateralis (VL-s). Recently developed high power NIRS facilitates simultaneous sampling of deep (i.e., rectus femoris , RF-d) and superficial muscles of RF (RF-s) and VL-s. Because deeper muscle is more oxidative with greater capillarity and sustains higher blood flows than superficial muscle, we used time-resolved NIRS to test the hypotheses that, following exercise onset, the RF-d has slower deoxy[Hb+Mb] kinetics with reduced amplitude than superficial muscles. Thirteen participants performed cycle exercise transitions from unloaded to heavy work rates. Within the same muscle (RF-s vs. RF-d) deoxy[Hb+Mb] kinetics (mean response time, MRT) and amplitudes were not different. However, compared with the kinetics of VL-s, deoxy[Hb+Mb] of RF-s and RF-d were slower (MRT: RF-s, 51 ± 23; RF-d, 55 ± 29; VL-s, 18 ± 6 s; P  < 0.05). Moreover, the amplitude of total[Hb+Mb] was greater for VL-s than both RF-s and RF-d ( P  < 0.05). Whereas pulmonary V˙O2 kinetics (i.e., on vs. off) were symmetrical in heavy exercise, there was a marked on-off asymmetry of deoxy[Hb+Mb] for all three sites i.e., MRT-off > MRT-on ( P  < 0.05). Collectively these data reveal profoundly different O2 transport strategies, with the RF-s and RF-d relying proportionately more on elevated perfusive and the VL-s on diffusive O2 transport. These disparate O2 transport strategies and their temporal profiles across muscles have previously been concealed within the "global" pulmonary V˙O2 response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app