JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases.

Bacterial phospholipid N-methyltransferases (Pmts) catalyze the formation of phosphatidylcholine (PC) via successive N-methylation of phosphatidylethanolamine (PE). They are classified into Sinorhizobium-type and Rhodobacter-type enzymes. The Sinorhizobium-type PmtA protein from the plant pathogen Agrobacterium tumefaciens is recruited to anionic lipids in the cytoplasmic membrane via two amphipathic helices called αA and αF. Besides its enzymatic activity, PmtA is able to remodel membranes mediated by the αA domain. According to the Heliquest program, αA- and αF-like amphipathic helices are also present in other Sinorhizobium- and Rhodobacter-type Pmt enzymes suggesting a conserved architecture of α-helical membrane-binding regions in these methyltransferases. As representatives of the two Pmt families, we investigated the membrane binding and remodeling capacity of Bradyrhizobium japonicum PmtA (Sinorhizobium-type) and PmtX1 (Rhodobacter-type), which act cooperatively to produce PC in consecutive methylation steps. We found that the αA regions in both enzymes bind anionic lipids similar to αA of A. tumefaciens PmtA. Membrane binding of PmtX1 αA is enhanced by its substrate monomethyl-PE indicating a substrate-controlled membrane association. The αA regions of all investigated enzymes remodel spherical liposomes into tubular filaments suggesting a conserved membrane-remodeling capacity of bacterial Pmts. Based on these results we propose that the molecular details of membrane-binding and remodeling are conserved among bacterial Pmts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app