JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells.

Biochemical Pharmacology 2017 December 2
3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca2+ concentration ([Ca2+ ]c ) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca2+ ]c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca2+ , was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca2+ ]c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app