Add like
Add dislike
Add to saved papers

Virtual Cell Based Assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes.

In order to replace the use of animals in toxicity testing, there is a need to predict human in vivo toxic doses from concentrations that cause adverse effects in in vitro test systems. The virtual cell based assay (VCBA) has been developed to simulate intracellular concentrations as a function of time, and can be used to interpret in vitro concentration-response curves. In this study we refine and extend the VCBA model by including additional target-organ cell models and by simulating the fate and effects of chemicals at the organelle level. In particular, we describe the extension of the original VCBA to simulate chemical fate in liver (HepaRG) cells and cardiomyocytes (ICell cardiomyocytes), and we explore the effects of chemicals at the mitochondrial level. This includes a comparison of: a) in vitro results on cell viability and mitochondrial membrane potential (mmp) from two cell models (HepaRG cells and ICell cardiomyocytes); and b) VCBA simulations, including the cell and mitochondrial compartment, simulating the mmp for both cell types. This proof of concept study illustrates how the relationship between intra cellular, intra mitochondrial concentration, mmp and cell toxicity can be obtained by using the VCBA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app