Add like
Add dislike
Add to saved papers

Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target-site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China.

Large crabgrass is a major grass weed widely distributed across China. This weed infests maize fields and has evolved resistance to the acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron due to continuous and intensive use. In this study, a total of 25 out of 26 large crabgrass populations collected from maize field demonstrated resistance to nicosulfuron. Amino acid modifications in ALS known to confer resistance to ALS-inhibiting herbicides in other weeds, were not found in the 9 tested resistant populations. The P450 inhibitor malathion significantly reversed resistance to nicosulfuron in 3 tested populations, indicating one or more P450s may be involved. Nicosulfuron was metabolized more rapidly in one resistant large crabgrass population than in a susceptible biotype. This demonstrates that the metabolic resistance mechanisms involving one or more P450s may be responsible for large crabgrass resistance to nicosulfuron in this biotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app